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Abstract: We survey a novel multi-core, multi-threaded Intel® architecture that holds enormous execution speedup potential, as well as a rich source of scheduling choices and errors; this new processor is the Intel® Core™ i7. This paper discusses the general architecture of Core i7, a parallel system on a single chip, outlines its speedup potential vs. a single- and an 8-way multi-processor, lists some initial errors and resulting fixes in the thread-scheduling algorithm, and provides preliminary performance measurements. This new processor has 4 complete, identical cores. Each core also possesses its own sibling Hyper-Thread (HT), resulting in a total of 8 logical cores from an OS view. The new thread model is named SMT for Simultaneous Multi-Threading. We give an overview of the new 8-processor architecture and summarize Intel’s Hyper-Threading history from Northwood to Core i7, conjecture on the ideal performance speedup of a synthetic program, and list actually measured performance results. We discuss various scheduling policies, taking into account necessary overhead to get a thread started on a core or its sibling HT, and conclude with a look into the future. This Core i7 is implemented in 45 nm High-K Silicon, launched in late 2008 as a High End Desktop platform with 1, and in 2009 as a server with 2 sockets, each holding one Core i7 processors.
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1. Introduction
In its latest launched microprocessor, Core™ i7, Intel® incorporates a variety of architectural features, aimed at garnering faster execution for applications and systems software. The architectural principle used is resource replication, described in this paper. Another speedup principle, dynamic clock acceleration, is described in a companion paper; that is known as Turbo Boost Technology [1], [2]. Here we survey the novel multi-core, multi-threaded Intel architecture expected to bring significant execution speedup for suitable applications as well as a rich source of scheduling choices. An application is suitable, if it can be naturally broken into multiple independent threads that share some but exclusively own other private, replicated HW resources.
Core i7 includes 4 identical cores, each having a second Hyper-Thread (HT) in silicon, resulting in 8 logical cores. We describe the new 8-processor architecture and summarize Intel’s Hyper-Threading history from Northwood to Core i7. We discuss various scheduling policies, qualify application classes that generally benefit from having multiple threads available, and characterize those that cannot take advantage of HT.
Section 2 highlights the Intel Core i7 architecture, and reviews the history of Hyper-Threading on Intel micro-processors. It also outlines the hypothetical speedup of this new multi-processor vs. a single-processor or a symmetric 8-way multi-processor. This is contrasted with actual speed measurements. Section 3 plays with several scheduling algorithms, showing
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their advantages and drawbacks, and discusses the typical performance S-curve. The final section 4 concludes and dares a look into the future of micro-processor architecture, speculating about coming performance and physical challenges.
2. Hyper-Threading Architecture
Intel’s Core i7 is a 4 core microprocessor based on the Nehalem core. Each core constitutes a complete microprocessor and embodies Hyper-Threading technology, allowing two threads to run simultaneously on the same core with minimal hardware overhead. Architectural register state, the return stack buffer, and the large page ITLB (instruction translation look-aside buffer) are replicated on all 8 threads. Other structures are statically partitioned among the threads, when 2 or more are running. But these resources are fully available to a single thread when all others happen to be idle. Partitioned structures include load buffer, store buffer, re-order buffer, and the small page ITLB. Several other structures are competitively shared. Whichever thread gets a shared resource first owns it.
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Figure 2.1 High-Level Nehalem Architecture

Competitively shared resources include the reservation stations, the ??DTLB, and the ??STLB. Most of the rest of the machine is unaware of SMT. Execution units and caches simply service requests regardless of which thread initiated it. Due to the minimal replication required for its implementation, Hyper-Threading is one of the most cost-efficient performance features.
Each core of the Intel Core i7 processor consists of an execution pipeline, a 32K I-cache, a 32K D-Cache, and a shared 256K mid-level unified cache. Each core is connected to the large shared 8MB cache in the Uncore. The Uncore also contains the QPI links and the memory controller.
With 4 cores and 2 threads per core, the Core i7 processor provides 8 threads to software (SW). From a SW view, all threads are functionally equivalent; from a performance point of view, 2 threads running on the same core are likely to get less performance than those same threads running on separate cores. When only one thread is running on a core, it gets all of the partitioned and shared resources of that core. When two threads run on the same core, they compete for the same resources and generally do not get the same performance they would get, if they had their own core. Because of this performance asymmetry, it is important for threads to be scheduled correctly on a system to achieve optimal performance.

During post-silicon performance evaluation, performance anomalies were discovered. Particularly, when fewer than 8 threads are ready to run, it is possible that threads end up paired on a core while other cores remain idle. The rest of this paper focuses on these anomalies and solutions to these anomalies.

2.1. A History of Hyper-Threading on Intel Silicon

Intel Hyper-Threading technology has a solid history and builds on the experience gained. It was first launched on the Intel Xeon™ processor, codenamed Prestonia. The first appearance of Hyper-Threading on the desktop was in the Pentium® 4, codenamed Northwood. Hyper-threading remained on Intel’s product line for the remainder of the Pentium4 family before disappearing in the Core2 ™ product line.
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Figure 2.2 Timeline of Intel Hyper-Threading Technology
Beginning with Core i7, Hyper-Threading is again prevalent in both the Intel server and desktop processors roadmap. But primary focus of this paper is Hyper-Threading on desktop platforms with a single socket.
Figure 2.2 shows how over the last decade, Intel’s microprocessor products alternated between architectures with and without Hyper-Threading. Yet either way, each generation boosted compute-power by growing performance through adding cores or by providing Hyper-Threading. 

	2002
	Pentium® 4 (Northwood)

	Number of cores
	1

	Total Number of HTs
	1

	Max speedup with HT
	2, no benefit to single-threaded apps


	2005
	Pentium® D (Smithfield)

	Number of cores
	2

	Total Number of HTs
	2

	Max speedup with HT
	2, no benefit to apps w < 3 threads


	2006-2008
	Core 2 Duo, Core 2 Quad (Conroe)

	Number of cores
	2 (Duo), 4 (Quad)

	Total Number of HTs
	0

	Max speedup with HT
	N/A


	2009
	Intel ® Core i7 (Nehalem)

	Number of cores
	4

	Total Number of HTs
	4

	Maximum speedup
	2, but no benefit to apps < 5 threads


Figure 2.3 Hyper-Threading on Desktop CPU’s 
Figure 2.3 lists for common desktop platforms, which processor had more than one core or more than one thread. It also shows for each product the total number of logical cores.
2.2. Hypothetical Speedup on Core i7

It would be wishful thinking to expect an n-core processor or a multi-processing architecture with n identical compute elements to achieve an n-fold speedup over an application that was designed, programmed, and compiled with sequential execution in mind. Reasons for lower n-fold execution speed include 1. data dependence in the original source program, likely written with sequential execution in mind, 2. control dependence of the original software, 3. the fact that the OS must use some core resource for book-keeping, and 4. the need for message passing and synchronization, if the original sequential application was parallelized by compiler optimizations or hardware parallelism (like multi-core and HT). However, automated techniques in high-level translators (parallelizing compilers) as well as manual efforts by the programmer (using parallel languages, or compiler-directives to indicate independent threads) allow faster execution than running on a uni-processor. For example, the SUIF compiler [3] applies inter-procedural analysis to locate coarse-grained parallelism for simultaneous execution on multiple cores. It also applies affine partitioning to increase data reuse in the processor by reducing cache misses. The former technique plus other methods of creating independent threads enable execution on multiple cores, the effects of which for Core i7 were measured and are shown here.
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Figure 2.4 1 Core vs. 1 Core + 1 HT
Figure 2.4 illustrates a not quite ideal, and on Core i7 realistic, speedup of a synthetic instruction snipped from 10 cycles on 1 core, down to 7 cycles on 1 core plus 1 HT. Each box represents 1 execution unit. The horizontal axis shows the 4 execution units that can all be active at the same time; the vertical axis shows time, allowing the same execution unit to be busy again at a different time. Scheduling on this low level is accomplished by the HW. Data depndences implied on the left rectangle (without SMT) are in fact respected in the tighter schedule on the right rectangle (having 1 core and 1 HT), in effect filling some of the available empty bins. Scheduling actions (u-code) onto execution unit is a bin-packing problem and thus theoretically NP-complete. Since the # of bins is so low (4) and each generally has unique capabilities, the non-polynomial cost is moot. We see how a 10-cycle instruction snippet is solvable in 7 by just providing 1 more HW thread.
2.3. Actual Performance Speedup

Core I7’s Hyper-Threading technology has been shown to improve the performance of highly threaded applications by as much at 6-fold in extreme cases over single-processor execution of the same application. While this represents a highly tuned micro-benchmark, the average speedup for the top threaded applications characterized by the Press is 1.2 times [ref??], with a maximum application speedup of 2.2 for tests running RAR [4], [5].
Applications suitable for speedup via HT include those that are highly parallel. Latency-bound applications are also suited for HT execution, as the HW is able to schedule further execution units while others are awaiting data from memory or IO operations. And apps using only a subset of execution units are candidates for good HT execution. This is shown by actual results in Figure 2.5. The chart also shows examples that actually slow down with HT. These include apps that have a low CPI count, as all execution units are busy (e.g. LINPACK [6]), or that use full memory bandwidth, in which case nothing is left to slip in other instructions.
3. Thread-Scheduling
Hyper-Threading provides the benefit of increased scalability for workloads requiring more processing cores than are physically available. However, workloads already satisfied by the number of processing cores may have their performance negatively impacted by Hyper-Threading. The negative effects can be mitigated or even eliminated through improved OS scheduling if the scheduler is topology- and Hyper-Threading aware.
Topology-aware scheduling can improve workload performance by efficiently selecting the logical processors for which to run the workload. This awareness must be combined with an understanding of how technologies such as Hyper-Threading affect software workloads.
Processor cores with Hyper-Threading expose two logical processors instead of a single logical processor. Yet these logical processors are not 100% equivalent to two processor cores as they are implemented within a single core. The performance gain achieved by Hyper-Threading can only be measured using systems that contain the same number of cores with and without Hyper-Threading.

Workloads used to gage this performance fall into three general categories. Under-utilized workloads contain less concurrent compute-bound threads than logical processors. There are also Equal-utilized workloads, containing an equal number of concurrent compute-bound threads as there are logical processors. Thirdly there are Over-utilized workloads, containing more concurrent compute-bound threads than logical processors.

Hyper-Threading shines for workloads considered Over-utilized in relation to the number of cores on the platform.  The OS-scheduler is able to achieve more throughput by using the extra logical processors to execute more threads concurrently.
Workloads considered Equal-utilized or Under-utilized vs. number of cores on a platform can be negatively impacted by Hyper-Threading. The OS-scheduler must keep one logical processor in a core idle while distributing the threads across the cores to avoid negative performance impact. Hyper-Threads are not equivalent to cores and as such workloads should utilize one logical processor in each available core before using the sibling.
The scheduling challenges lie in maintaining optimal performance with Equal-utilized and Under-utilized workloads as the number of cores with Hyper-Threading increase.  It becomes all too easy to schedule workloads onto a single core than distribute across the cores.

3.1. Scheduling Anomalies
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Figure 3.1 HT on Same Core First
A straight-forward scheduling optimization is the equal treatment of all logical processors in a round robin fashion, or to choose any idle processor to run the next ready thread. Such scheduling policies work fine when all logical processors are topologically equivalent, but can result in non-optimal behavior with technologies such as Hyper-Threading.

The example in Figure 3.1 depicts a dual core platform with Hyper-Threading running 2 threads A and B. The figure shows that the scheduler has chosen to run both on core 0 leaving core 1 idle. This results in a non-optimal scheduling practice since Hyper-Threads are not equivalent to separate physical cores. A remedy is for the OS scheduler to prefer idle cores over idle logical processors. Figure 3.2 shows an evenly distributed two-threaded application across two physical cores with Hyper-Threading. This distribution generally yields better performance than executing on a single physical core with Hyper-Threading. The threads in this case can utilize the full processor core while in Figure 3.1 the threads will share a single core.
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Figure 3.2 Idle Cores First
3.2. Schedule Improvements and Resulting Speedup
Idle Core Preference (3d Triangles): An application that tests the performance of graphics card was degrading by almost 50% when Hyper Threading was turned ON. This was a 2 threaded workload that ran on one core and its HT sibling, leaving other cores idle. By applying the idle core first algorithm, the scheduler instead selects idle core over logical processor and performance was improved by 20%.
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Figure 3.3 Over-Scheduled Cores
Long Running Thread Rebalance: The simple OS scheduler can be improved to prefer idle cores over idle logical processors however poor performance may still result. The OS scheduler may not be aware of how long the threads will run or what work they will perform. This situation can lead to threads executing on the same physical core as illustrated in Figure 3.3 The illustration shows that the scheduler has distributed Thread A through Thread D on the first logical processor of each physical core. The scheduler further distributes subsequent threads E - H appropriately to the second logical processor of each physical core.
The time line in Figure 3.xx shows that at time 12 all logical processors are idle with the exception of logical processors 0 and 1. These two threads continue to run on this single core for an extended period of time while the rest of the system is idle. This can result in negative impact to performance compared to the same system without Hyper-Threading.
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Figure 3.4 Over-Scheduled Core
The state of the system has changed since the time the OS scheduler first made the decision to place the threads on the same physical core. The system switched from an "Over-utilized" state to an "Under-utilized" state in relation to the number of cores on the platform. The solution is for the OS Scheduler to rebalance the system however it must do so with caution.

The OS Scheduler may not be aware of how long threads will continue to run or what work is being accomplished. There is a simple metric which can be used to achieve a good faith estimate of the thread's longevity and this is the thread's time slice. The preemptive OS allocates each scheduled thread a time slice which allows the OS to share the processing resources amongst multiple threads. The OS can use the time slice as a method to classify threads as long running. Threads which consistently exceed their time slice may be classified as long running threads.

The end of the time slice is also an appropriate location to perform a rebalancing of processor resources. There may not be another thread in the queue in which case the OS Scheduler normally will continue to execute the current thread. Instead, to support Hyper-Threading the OS Scheduler could determine if the current Core's sibling is also busy and if there are idle cores available. The OS Scheduler can then make a decision to rebalance the thread to an appropriate logical processor and maximize performance.
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Figure 3.5 Long-Running Thread-Rebalance
The illustration in Figure 3.5 depicts the same scenario as shown in Figure 3.4 with the exception of implementing a "Long Running Thread Rebalance" algorithm. This situation resulted in rebalancing Thread E from logical processor 1 to logical processor 2 providing both Threads E and Thread A with complete cores for execution.
The sample application used here demonstrates the capabilities of a very simple multi-grid solver in computing a three dimensional potential field. This is a case of underutilized workload where the application runs with 4 threads while 8 logical processors are available.
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Figure 3.6 Non-Optimal Schedule, Too Short Slice
Software-Based Dynamic Hyper-Threading: The discussed implementations of scheduler enhancements do not prevent all bad situations. These decisions only occur at the beginning of a time slice or at the end of a time slice with all logical processors always fair game for selection. These small windows in time may be misleading to the OS Scheduler and lead to incorrect scheduling decisions.
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Figure 3.7 Scheduling Based only on Idle Logical Processor Not Always Optimal
Consider the example situation depicted in Figure 3.7. This workload consists of five threads “A” though “E”, of which only four are ever concurrently active. The main thread "A" is used by the workload to coordinate the remaining four threads which perform the actual work. Thread "A" will trigger threads "B", "C", "D", and "E" to be scheduled. The OS Scheduler using the idle core preference algorithm will select an idle core when possible for each thread. The time line shows that this is the case for threads "B", "C" and "D" which are all scheduled on an idle core. This is not the case when the scheduler selects the logical processor for Thread "E". The OS Scheduler does not have an idle core and chooses thread "E" to share Core 0 with thread "B".

The coordination thread "A" then enters a wait state in which it will sleep until the work is complete. This action now leaves core 1 completely idle while the workload threads "B" and "E" continue to share core 0. The "Long Running Thread Rebalance" cannot rebalance this workload because these threads do not exceed their time slice.

These threads are compute bound however they run in shorter time than a time slice but are continuously scheduled. The OS Scheduler is not tracking the time beyond the scheduling decisions at the beginning and end of a time slice so it cannot know that it would be better to schedule thread "E" to logical processor 2 or 3.

A solution is to dynamically enable and disable Hyper-Threading through software based on various heuristics. This method would allow the OS to remove logical processors from the OS Scheduler and prevent logical processors from being chosen. These heuristics on when logical processors are available or not available should be based on data from workloads which benefit and suffer from Hyper-Threading.

The simplest heuristic is any workload which requires more than four logical processors will use more than 50% total system CPU resources on a Hyper-Threaded platform. This being implemented for this workload in Figure 3.7 shows the OS Scheduler ignoring the second logical processor in each core for this workload. The workload never exceeds 50% utilization since it only ever has four concurrently executing threads.
This model allows the OS Scheduler to gain a wider view of system utilization not possible before. The OS Scheduler now can use these heuristics to determine not only when a workload would benefit from Hyper-Threading but also when a workload would not and even prevent the need to perform the rebalancing in some cases.
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 Figure 3.8 System Load-Aware Scheduler
Software-Based Dynamic Hyper-Threading: Here is an application that encodes live or prerecorded audio and video content to media file or streams. This is a 4 threaded workload using one thread as scheduling thread. This is a short workload and completes within seconds. With no scheduling algorithm applied workload was seeing ~10% slowdown when hyper threading was turned ON. Applying the first two scheduling methods did not help this workload as threads run for shorter time and ends before OS scheduled time slice, causing the next thread to be scheduled on the logical processor of same thread or same thread continues to run on same LP. By applying Dynamic Hyper Threading, 4 logical processors will be disabled until further 4 processors reach 50% CPU utilization. Because of this disabling load balancing can be achieved across all threads, and logical processors will be used as needed. After applying this algorithm, performance was on par with Hyper-Threading off.
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Figure 3.9 Video/Audio Encoder Performance Regained with Dynamic HT
All Scheduling Optimizations: Figure 3.10 shows the workloads that benefit from all three scheduling optimizations mentioned above, which in contrast experienced performance degradation with our original default scheduling algorithm.
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Figure 3.10 General Application Performance Regains Using all Scheduling Optimizations
3.4 Turbo Performance S-Curve

Once the Silicon was ready with 4 cores and 4 HTs and an experimental OS was ready to see the 8 logical cores, we conducted 2 series of measurements. Series 1 used the default scheduling algorithm across a large number of benchmarks. The result did prove an overall performance boost, yet also exhibited a number of slower-than expected execution speeds. Reasons for the slower than expected and the scheduling variations are shown earlier in this paper. Series 2 used the scheduling improvements discussed earlier.
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Figure 3.11 Performance with SMT on / SMT Off
The results are shown in Figure 3.11. The total test suite consists of over 1700 cases. Of these, only 570 tests are included in the discussion here, as they all ran on the same 64-bit OS. The horizontal axis in Figure 3.11 represents the 570 selected tests; the vertical shows the relative performance for each of the 570 tests with SMT on vs. off. Both series are integrated into the same graphic, to contrast the performances before and after improving the scheduler.
	
	Default scheduler
	Optimized scheduler

	Worse with SMT on
	43
	1

	Same perf. SMT on/off
	431
	461

	Better with SMT on
	96
	108

	Total test cases
	570
	570


While the default scheduler exhibited 43 cases, for which SMT delivered lower performance than pure 4 cores, the optimized scheduler exposed only 1 such case. Similarly, the original scheduler yielded 96 improvements over SMT off, while the optimized scheduler yielded 108 test cases with SMT performing better than SMT off. Clearly the research focused on the “bad” cases, and the results prove that these were resolved but 1. In conclusion, SMT proves to be a performance enhancing technology.
4. Look Ahead and Conclusion
We surveyed multi-core execution and Hyper-Threading on the Intel Core i7, and discussed resulting speedups and scheduling options. Whether the computing industry will devise future micro-processors exceeding the 1 billion transistors per part seems to be just a question of time. It will be a natural evolutionary step that the number of cores will grow way beyond the 4 in the current Core i7. Whether these cores shall have sibling Hyper-Threads, or whether the architects shall use those transistors for even more cores remains to be seen.

Shrinkage of future silicon technology is just 1 reason, why the > 1 billion transistors and the > 4 core are plausible. Even today the 45 nm technology is outgrown. Intel already has built 32 nm processors of the next generation. As a side effect of the physical shrinkage comes the further benefit of lower power consumption for identical compute tasks and same clock rates; a further green goal, to which Intel will contribute.
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